

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

NPHY-171E

Dr Rhyme Setshedi

North West University Old Science Building Office 1009

Week 03-04

Outline

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product

Vector Notation

- Cartesian coordinates
- Unit Vector Notation

2 Vector Addition and Subtraction

- Adding Vectors Graphically
- Adding Vectors Mathematically

3 Multiplying Vectors

- Vector Multiplication Dot Product
- Vector Multiplication Cross Product

Motion in 2D and 3D

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

You will be able to

 $3.0.1\,$ draw vectors in a 2D and on 3D frame,

3.0.2 calculate motion vector magnitudes and directions,

3.0.3 find motion starting and ending positions of a displacemnt vector

Vector notations

Vector Notation

Cartesian coordinates

Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product Vector

Multiplication -Cross Product 3.0.1.1 Graphical notations - eg. A straight line with an arrow head.

3.0.1.2 Mathematical notations - eg. unit vector notation, Cartesian coordinate system,etc

Position vectors

Vector Notation

Cartesian coordinates

Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

REMINDER: A vector is a physical quantity with **size** and **direction**.

Example - Position Vectors

A **position** is a single point which can be expressed as P=(x;y;z) eg. $P_1 = (0;0;0)$ and $P_2 = (5;2;0)$.

A **position vector** from P_1 to P_2 is given by $\vec{P} = \langle 5; 2; 0 \rangle = 5\hat{i} + 2\hat{j}$

Displacement

Vector Notation

Cartesian coordinates

Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product

A **displacement** is a shortest distance between two points $\vec{S} = P_2 - P_1$

Example

х

A displacement from $P_1 = (0;0;0)$ to $P_2 = (5;2;0)$ is $\vec{S} = P_2 - P_1 = \langle x_2 - x_1; y_2 - y_1; z_2 - z_1 \rangle = \langle 5 - 0; 2 - 0; 0 - 0 \rangle = \langle 5; 2; 0 \rangle$

Velocity

Vector Notation

Cartesian coordinates

Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

Definitions

Average Velocity is the rate of change of position $\vec{V} = \frac{p_2}{t_2} - \frac{p_1}{t_1} = \frac{\Delta \vec{S}}{\Delta t} \quad or \quad \vec{V} = V_x \hat{i} + V_y \hat{j} + V_z \hat{k} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k}$

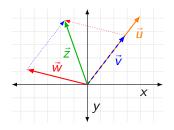
Instaneous Velocity is the <u>rate</u> of change of position $\vec{V} = \frac{\delta \vec{S}}{\delta t} = \frac{\delta x}{\delta t}\hat{i} + \frac{\delta y}{\delta t}\hat{j} + \frac{\delta z}{\delta t}\hat{k} = \frac{\delta}{\delta t}(x\hat{i} + y\hat{j} + z\hat{k})$

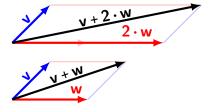
Vector addition - Graphical Method

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition an Subtraction


Adding Vectors Graphically


Adding Vectors Mathematically

Multiplying Vectors

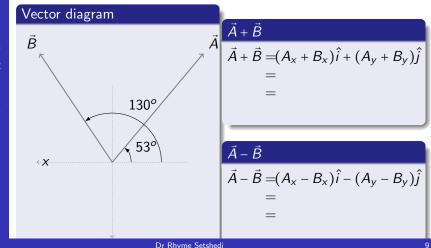
Vector Multiplication Dot Product

Vector Multiplication -Cross Product

Vector Addition - Mathematical methods

Vector Notation

Cartesian coordinates Unit Vector Notation


Vector Addition and Subtraction Adding Vector

Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product *Example* : Use the mathematical methods to find $\vec{A} + \vec{B}$ and $\vec{A} - \vec{B}$ if the magnitude of A = 22 and the magnitude of B = 15.

NPHY-171E

Vector Multiplications

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

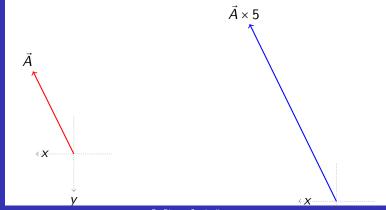
- scalar or dot product (e.g $\vec{A}.\vec{B} \longrightarrow scalar$)
- **2** vector or cross product (e.g $\vec{A} \times \vec{B} \longrightarrow vector$)

Multiplying a vector with a scalar

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically


Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

Example : Multiply $\vec{A} = -3\hat{i} + 5\hat{j}$ by 5

Multiplying a vector by a scalar changes its magnitude. Answer: $\therefore 5 \times \vec{A} = (5)(-3)\hat{i} + (5)(5)\hat{j} = -15\hat{i} + 25\hat{j}$

Scalar Product (a.k.a Dot product)

Vector Multiplication -Dot Product

Scalar/dot product:

$$\vec{a}.\vec{b} = \vec{b}.\vec{a} = |\vec{a}||b|\cos\theta$$
$$= (a_x\hat{i} + a_y\hat{j} + a_z\hat{k}).(b_x\hat{i} + b_y\hat{j} + b_z\hat{k})$$

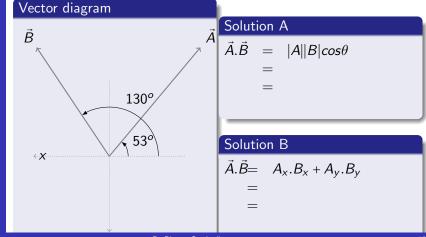
where

4

$$\hat{i}.\hat{i} = \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1 \hat{i}.\hat{j} = \hat{i}.\hat{k} = \hat{j}.\hat{k} = \hat{j}.\hat{i} = \hat{k}.\hat{i} = \hat{k}.\hat{j} = 0$$

Scalar/dot product method

Vector Notation


Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product *Example* : Find the scalar product of the two vectors $\vec{A}.\vec{B}$ if the magnitude of A = 22 and the magnitude of B = 15.

Scalar/dot product method

Vector Multiplication Dot Product

NPHY-171E

Example : Find the angle between \vec{A} and \vec{B} , where

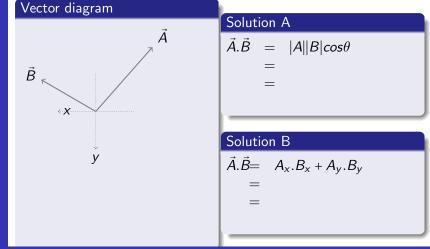
$$\vec{A} = 3\hat{i} + 4\hat{j}$$
$$\vec{B} = -4\hat{i} + 2\hat{j}$$

rs	Vector diagram	Solution
rs ly	Â	$\vec{A}.\vec{B} = A B cos heta$
	~	
-	₿ _ĸ	$\therefore \theta =$
t – E		
	★ X	
	У	
	Dr Rhyme Setshed	li 1

Calculating a scalar product

Vector Notation


Cartesian coordinates Unit Vector Notation


Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vector Graphically

Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

Cross Product

Vector Product (a.k.a cross product)

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product

O Vector/cross product

 $|\vec{a} \times \vec{b}| = |a||b|\sin\theta$ this is the magnitude of $\vec{a} \times \vec{b}$

$$\vec{a} \times \vec{b} = |a||b|\sin\theta \ \hat{u} \qquad this is a vector \ \vec{a} \times \vec{b} \\ = (a_x\hat{i} + a_y\hat{j} + a_z\hat{k}) \times (b_x\hat{i} + b_y\hat{j} + b_z\hat{k})$$

where $\hat{u} = \hat{i} + \hat{j} + \hat{k}$ and

$$\hat{\vec{j}} \times \hat{i} = 0 \qquad \hat{j} \times \hat{j} = 0 \qquad \hat{k} \times \hat{k} = 0 \\ \hat{\vec{j}} \times \hat{j} = \hat{k} \qquad \hat{i} \times \hat{k} = \hat{j} \qquad \hat{j} \times \hat{k} = \hat{i} \\ \hat{\vec{j}} \times \hat{i} = -\hat{k} \qquad \hat{k} \times \hat{i} = -\hat{j} \qquad \hat{k} \times \hat{j} = -\hat{i}$$

Cross product

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors Mathematically

Multiplying Vectors

Vector Multiplication Dot Product

Vector Multiplication -Cross Product

Find an expression for $\vec{A} \times \vec{B}$ where

$$\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$
$$\vec{B} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$$

Technique

$$\vec{A} \times \vec{B} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} = \begin{bmatrix} [(a_y)(b_z) - (a_z)(b_y)]\hat{i} \\ -[(a_x)(b_z) - (a_z)(b_x)]\hat{j} \\ +[(a_x)(b_y) - (a_y)(b_x)]\hat{k} \end{bmatrix}$$

Example

If $\vec{A} = <1; -7; 1 >$ and $\vec{B} = <5; 2; 4 >$, find $\vec{A} \times \vec{B}$

Vector cross product

Vector Notation

Cartesian coordinates Unit Vector Notation

Vector Addition and Subtraction Adding Vectors Graphically Adding Vectors

Multiplying Vectors

Vector Multiplication -Dot Product

Vector Multiplication -Cross Product

Excercise

If
$$\vec{A} = <1; -7; 1 > \text{and } \vec{B} = <5; 2; 4 >, \text{ find } \vec{A} \times \vec{B}$$

Answer

$$\vec{A} \times \vec{B} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 1 \\ 5 & 2 & 4 \end{bmatrix} = \begin{bmatrix} [(-7)(4) - (1)(2)]\hat{i} \\ -[(1)(4) - (1)(5)]\hat{j} \\ +[(1)(2) - (-7)(5)]\hat{k} \end{bmatrix} = \begin{bmatrix} -30\hat{i} \\ +1\hat{j} \\ +37\hat{k} \end{bmatrix}$$