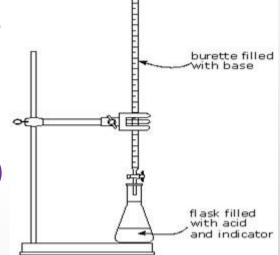
Determination of % citric acid

Molar masses


- KHF = 204.23 g/mol
- Dehydrated citric acid = 192.14 g/mol
- Citric acid monohydrate = 210.14 g/mol

Titration

- What is the purpose of a titration?
- Which apparatus are used for a titration?
- How does a burette work?
- How does a pipette work?
- Which information is known and which information is unknown in a titration?
- What is very important in a titration?

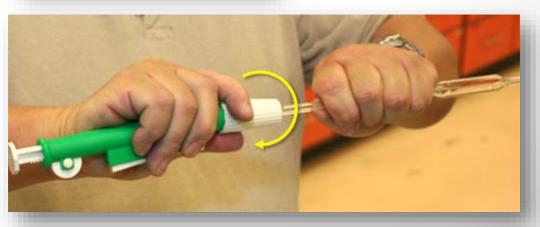
$$n_a / n_b = (C_a V_a / C_b V_b)$$

$$n_{KHF} / n_{NaOH} = (CV)_{KHF} / C_{NaOH} V_{titrasie syfer}$$

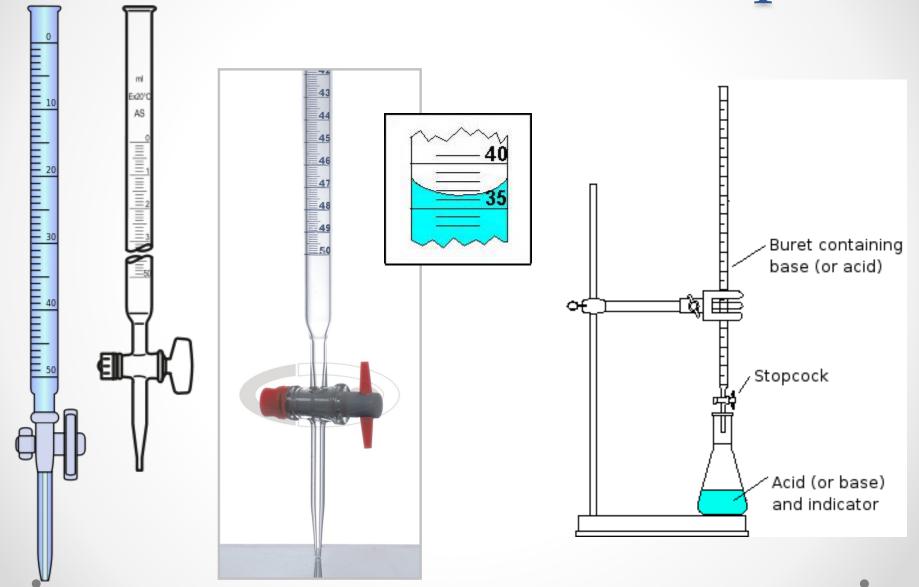
Concentration of Hydrogen ions Examples of solutions at this pH compared to distilled water 10,000,000 Battery acid, Strong Hydrofluoric Acid pH= 0 1,000,000 Hydrochloric acid secreted pH = 1by stomach lining 100,000 Lemon Juice, Gastric Acid Vineger 10,000 Grapefruit, Orange Juice, Soda 1,000 Acid rain Tomato Juice 100 Soft drinking water pH = 5Black Coffee 10 Urine pH = 6Saliva "Pure" water pH = 71/10 Sea water pH = 81/100 Baking soda pH = 91/1,000 Great Salt Lake pH = 10Milk of Magnesia 1/10,000 Ammonia solution pH = 111/100,000 Soapy water pH = 121/1,000,000 Bleaches pH = 13Oven cleaner 1/10,000,000 Liquid drain cleaner

pH = 14

Titration apparatus

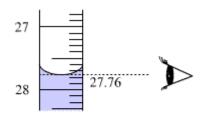


How to use a pipette pump.



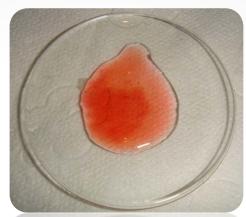
How to test burette taps.

Funnels on top of burette and burette readings



Remove the funnel before taking a reading on the burette.

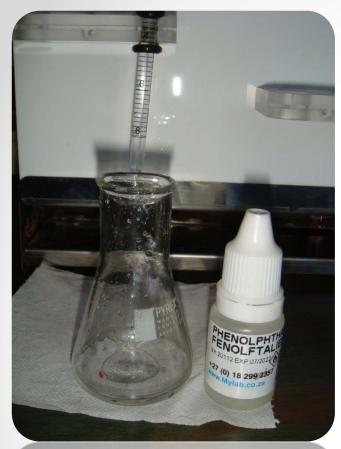
Move your eyes to the level of the liquid surface and read the value of the bottom of the meniscus with 1/10 of the smallest scale marked on the burette.

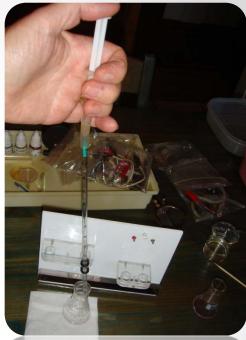

Determine the % citric acid in fizzy drinks

- Each student works individually.
- Three titrations are done.
- Time management is very important.
- Standardization of NaOH solution (titration 1)
- NaOH(aq) + KHC₈H₄O₄(aq) \rightarrow KNaC₈H₄O₄(aq) + H₂O(I)
- Titration of pure citric acid (titration 2)
- $C_6H_8O_7 + 3NaOH \rightarrow C_6H_5O_7Na_3 + 3H_2O$
- Titration of citric acid in fizzy drink (titration 3)
- Indicator for all three titrations is phenolphthalein

Standardization of NaOH solution (titration 1)

- Boil 150 mL fizzy drink and let it stand to cool down.
- NaOH is hygroscopic.
- KHF primary standard
- Weigh 0,15g KHF (weigh twice in two conical flasks)
- Dissolve KHF in approximately 50 mL distilled water
- Titrate against given NaOH
- Repeat the titration
- Record the titration numbers of the TWO titrations.
- Standardize the NaOH





Titration of pure citric acid (titration 2)

- Wash glassware and rinse with distilled water
- Weigh 0.04g citric acid (twice in TWO flasks)
- Dissolve acid in approximately 50 mL distilled water
- Titrate against standardized NaOH
- Repeat the titration
- Record the titration numbers of TWO titrations.
- Determine the concentration of citric acid.
- Determine the mass of citric acid.
- Determine the percentage citric acid in pure citric acid.

Titration of citric acid in fizzy drinks (titration 3)

- Transfer 25 mL fizzy drink with pipette to conical flask.
- Three drops phenolphthalein in conical flask.
- Titrate fizzy drink against standardized NaOH.
- Repeat the titration.
- Determine average titration number of TWO titrations.
- Determine the concentration of citric acid in fizzy drink.
- Determine the mass of citric acid.
- Determine % citric acid in fizzy drink.
- Wash all apparatus.
- COMPLETE questions and calculations on answersheet.

Calculations (1) and (2)

$$n_a / n_b = (C_a V_a / C_b V_b)$$

 $n_{KHF} / n_{NaOH} = (CV)_{KHF} / C_{NaOH} V_{titration number}$

 $n_{KHF} = (CV)_{KHF}$ and $n_{KHF} = m/M_{KHF}$ Calculate C_{NaOH} the unknown

$$n_a / n_b = (C_a V_a / C_b V_b)$$

$$n_{citric} / n_{NaOH} = (CV)_{citric} / C_{NaOH} V_{titration number}$$

 $n_{citric} = (CV)_{citric}$ and $n_{citric} = m/M_{citric}$ Calculate mass_{citric} the unknown (Mass_{citric} / mass_{weighed}) x 100 = % purity

Calculations (3)

$$n_a / n_b = (C_a V_a / C_b V_b)$$

$$n_{citric} / n_{NaOH} = C_{citric} V_{citric} / C_{NaOH} V_{titration number}$$

Calculate C_{citric} the unknown

Meaning of the concentration of citric acid:

A mol citric acid in 1000 ml

Therefore X mol citric acid in 100 ml is

 $X = (A \times 100)/1000 \text{ mol}$

% acid in fizzy drink

Mass in gram per 100 ml

Change mol in 100 ml to (mass in 100 g) by multiplication with M_{citric} Massa = X mol x M_{citric}

% citric acid in the fizzy drink = answer received from mass