ANSWERS TO "TRY YOURSELF" PROBLEMS FROM STUDY SECTION 2.1

Try Yourself 2.1

Which one of the following atoms contains the largest number of protons?

¹²⁸Te; ¹²¹Sb; ¹²⁷I; ¹⁰⁷Ag; ¹¹²Cd

Answer:

Look on the periodic table for the atom number, Z.

¹²⁸Te (Z = 52 protons) ¹²¹Sb (Z = 51 protons) ¹²⁷I (Z = 53 protons) ¹⁰⁷Ag (Z = 47 protons) ¹¹²Cd (Z = 48 protons)

Try Yourself 2.2

Give the mass number of: a) a Nickel atom with 31 neutrons; b) a Bismuth atom with 127 neutrons and c) a Tantalum atom with 110 neutrons.

Answers:

From the periodic table Nickel (Ni) has an atomic number of 28. So, the mass number will be 28 + 31 = 59.

From the periodic table Bismuth (Bi) has an atomic number of 83. So, the mass number will be 83 + 127 = 210.

From the periodic table Tantalum (Ta) has an atomic number of 73. So, the mass number will be 73 + 110 = 183.

Try Yourself 2.3

What is the mass of the He-atom relative to the carbon atom?

Given: 1He-atom = 6.6466×10^{-27} kg (real mass) Scale: 1 amu = 1.6606×10^{-27} kg

Answer:

If 1 amu weighs 1.6606×10^{-27} kg then the relative mass of a He-atom will be:

 $6.6466 \times 10^{-27} \text{ kg} / 1.6606 \times 10^{-27} \text{ kg} = 4.0025 \text{ amu}$

Mass of a He-atom relative to Carbon = 4.0026 / 12 = 0.333 (This means that the relative mass of a He-atom is a third of the relative mass of a C-atom. You can also say that a He-atom is 66.7% lighter than a C-atom).

NB!!!!

Go to your periodic table and look at the mass number for Helium. You will see that it is 4.0026 amu.

This means the following: A He-atom is about 3 times lighter than a carbon atom, because this relative mass of a He-atom is relative to carbon. The same principle will apply for all the other elements on the periodic table.

Try Yourself 2.4

What is the mass in kg of an oxygen atom?

Given: Relative mass of O = 16 amu

```
Scale: 1 amu = 1.6606 \times 10^{-27} \text{ kg}
```

Answer:

Well, if 1 amu weighs 1.6606×10^{-27} kg the 16 amu's should weigh: $16(1.6606 \times 10^{-27} \text{ kg}) = 2.657 \times 10^{-26} \text{ kg}$

So, the real mass of an Oxygen atom is 2.657×10^{-26} kg/atom or 2.657×10^{-23} gram/atom.