ANSWERS TO "TRY YOURSELF" PROBLEMS FROM STUDY SECTION 2.8

Try Yourself 2.18

What is the percent composition of Cl in Pt(NH₃)₂Cl₂?

Answer:

You will need the molar masses of Cl and that of the whole compound. $M_{Cl} = 35.45 \text{ g.mol}^{-1}$ and $M_{Pt(NH3)Cl2} = 300.04 \text{ g.mol}^{-1}$

Mass % of Cl in Pt(NH₃)₂Cl₂ = $[2(M_{Cl}) / M_{Pt(NH_3)2Cl_2}] \times 100/1$ (Remember there are 2 Cl atoms). = $(70.9 \text{ g.mol}^{-1} / 300.04 \text{ g.mol}^{-1}) \times 100/1 = 23.63 \text{ \% Cl in the compound.}$

So, you can say that 23.63% of the compound is chlorine, the rest will be platinum, nitrogen and hydrogen. You can also say that for every 100 grams of the compound, 23.63 grams will be chlorine.

Try Yourself 2.19

What mass of lead is present in 10.0 g of PbS?

Answers:

You will need the molar mass of PbS as well as S. $M_S = 32.1 \ g.mol^{-1} \ and \ M_{PbS} = 239.3 \ g.mol^{-1}$

% S in PbS = $(32.1 \text{ g.mol}^{-1} / 239.3 \text{ g.mol}^{-1}) \times 100/1 = 13.41$ % S in PbS.

Therefore: In 10.0 g of PbS there will be 13.41 % (or 1.34 gram) of Sulphur, the rest (8.66 gram) will be lead (Pb).

Eugenol is the major component in oil of cloves. It has a molar mass of 164.2 g/mol and is 73.14% C and 7.37% H; the remainder is oxygen. Calculate the empirical and molecular formulas of eugenol.

Answer:

73.14 % C = 73.14 g C = 73.14 g / 12 g.mol⁻¹ = 6.10 mol C 7.37 % H = 7.37 g H = 7.37 g / 1.01 g.mol⁻¹ = 7.30 mol H 19.49 % O = 19.49 g O = 19.49 g / 16 g.mol⁻¹ = 1.22 mol O

Calculate the mol ratios between all the elements:

6.10 mol C / 1.22 mol O : 7.30 mol H / 1.22 mol O : 1.22 mol O / 1.22 mol O = 5 mol C : 5.98 mol H : 1 mol O = 5C : 6H : 1O

Empirical formula = C_5H_6O with a molar mass of 82.06 g.mol⁻¹

The given molar mass is 164.2 g.mol⁻¹ which is two times the molar mass of the empirical formula.

Therefore: The molecular formula will be 2x the empirical formula, which will be $C_{10}H_{12}O_2$

Formula from mass (data from lab experiments)

Tin metal (Sn) and purple iodine (I₂) combine to form orange, solid tin iodide with an unknown formula.

 $Sn(s) + I_2(s) \rightarrow Sn_x I_y(s)$ Mass of Sn reacted = 0.455 g Mass of I₂ reacted = 1.947 g

Calculate die values of x and y (in other words calculate the formula of the compound.

Answer:

$$M_{S_{n}} = 118.71 \text{ g.msl}^{-1}$$

$$M_{I} = 126.90 \text{ g.msl}^{-1}$$

$$= > n_{S_{n}} = \frac{M}{M} = 0.455 \text{ g.msl}^{-1} = 0.00383 \text{ mol}S_{n}$$

$$= > n_{S_{n}} = \frac{M}{M} = 0.455 \text{ g.msl}^{-1} = 0.00383 \text{ mol}S_{n}$$

$$= > T_{or} \text{ mono-atomic Iodine(I)}$$

$$= > n_{I} = \frac{M}{M} = \frac{1.947 \text{ g.msl}^{-1}}{126.90 \text{ g.msl}^{-1}} = 0.0153 \text{ mol}S_{n}$$

$$= 1 \text{ mol} \text{ Ratio between Sn and I}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.0153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol} \text{ Sn } \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 1 \text{ mol}S_{n} \frac{0.00153 \text{ mol}S_{n}}{0.00383 \text{ mol}S_{n}}$$

$$= 0.00767 \text{ mol}S_{n}$$

$$= 0.00767 \text{ mol}S_{n}$$

$$= 1 \text{ mol}S_{n} \frac{0.00383 \text{ Arel}S_{n}}{0.00383 \text{ Arel}S_{n}}$$

$$= 1 \text{ mol}S_{n} \frac{0.00383 \text{ Arel}S_{n}}{0.00383 \text{ Arel}S_{n}}$$

$$= 1 \text{ mol}S_{n} \frac{0.00383 \text{ Arel}S_{n}}{0.00383 \text{ Arel}S_{n}}$$

$$= 1 \text{ mol}S_{n} \frac{0.00383 \text{ Arel}S_{n}}{0.00383 \text{ Arel}S_{n}}$$

$$= 1 \text{ mol}S_{n} \frac{0.00383 \text{ Arel}S_{n}}{0.00383 \text{ Arel}S_{n}}$$

Elemental sulfur (1.256 g) is combined with fluorine, F_2 , to give a compound with the formula SF_x , a very stable, color-

less gas. If you have isolated 5.722 g of SF_x , what is the value of x?

Answer:

1.256 g 5 and Ms = 32.1 g.mal-1 5.722 g SFx isolated Using the Law of mass conserbation we can deduce the following: 5.7229 of SFx - 1.256g of S = 4.466g of F .: 4.4669 of Fluorine were used in the to mol amount of 5: A = M = 1.256g = 32.1g.mol" = 0.0391 mol S * Using mono-atomic Fluerine (F), NF = M = 4.466g M = 18.99 g.mol⁻¹ = 0.235 mol F. Ratio between 5 and F 0.0391 mol S . 0.235 mol F 0.0391 mol S . 0.0391 == Formula is SFG (x=6) # Using diatomic fluorine (Fz) NF2 = M = 4.4669 M = 2(18.999 mot) = 37.985 mot Ratio between S and F2 0.0391 S: 0.118F2 = 15:3F2 0.0391 S: 0.0391 = 15:3F2 intol : SF6 (26=6)

Given RuCl₃.xH₂O

If you heat 1.056 g of the hydrated salt and find that only 0.838 g of $RuCl_3$ remains when all of the water has been driven off. Calculate the value of x from this information.

Answer:

You will need the following molar masses: $M_{RuC13} = 207.42 \text{ g.mol}^{-1}$; $M_{H2O} = 18.02 \text{ g.mol}^{-1}$

Calculate the mol amount of water lost during heating:

Mass of water lost during heating = $1.056 \text{ g} - 0.838 \text{ g} = 0.218 \text{ g} \text{ H}_2\text{O}$ $n_{water} = m_{water} / M_{water} = 0.218 \text{ g} / 18.02 \text{ g.mol}^{-1} = 0.0121 \text{ mol} \text{ H}_2\text{O}$ (1.21 x 10⁻² mol H₂O)

Calculate the mol amount of anhydrous RuCl₃ left over after heating:

 $n_{RuCl3} = m_{RuCl3} / M_{RuCl3} = 0.838 \text{ g} / 207.42 \text{ g.mol}^{-1} = 0.00404 \text{ mol } RuCl_3 (4.04 \text{ x } 10^{-3} \text{ mol } RuCl_3)$

Calculate the mol ratio between water and anhydrous RuCl₃:

Ratio of Anhydrous $RuCl_3$: $H_2O = 0.0121 \text{ mol} / 0.00404 \text{ mol} = 2.99 H_2O$: $1 RuCl_3 = 3 H_2O$: $1 RuCl_3$ (Remember for a ratio calculation you will divide the smallest mol amount into the larger mol amount(s)).

Conclution:

X = 3; therefore the formula is: RuCl₃.3H₂O (Rutinium(III) chloride trihidraat. / Ruthenium(III) chloride trihydrate).