

ANSWERS TO SECTION 4.5 QUESTIONS

Try yourself 4.5a = P 1.0 mol. dni 3 HCI-solution [H+] = 1.0 mol. dm⁻³ } Because: [CI-] = 1.0 mol. dm⁻³] HCI = 1H^ter) + 1CI (*2) Total ion concentration = 2 mol. du-3 Because: 5 mol. dm HCl H⁺ ci⁻ H⁺ Ci⁻ There are 5 H⁺-ions H⁺ ci⁻ There are 5 Ci⁻-ions ci⁻ Ht ci Ht In total there are 10 10 ns (5 H+ + 5 CT) = 0.500 mol. dun 3 Naz Soy - solution Na2 SO4(5) = 2 Nat (ay) + SO4 (ay) : [Nat] = 2 [Na2504] = 2(0.500) = 1.00 M : [So42-] = 0.500 M _ Total ion Concentr. = 1.50 M

Try yourself 4.5 a = 0.500 mol-dun ammonium phosphate sol. (NH4)3 PO4 (5) = 3NH4 (ag) + PO4 (ag) : [NH4] = 3 [NH4]3 PO4] = 3 (0.500) = 1.500 M :- [PO43-] = 0.500 M Total ion Concentr. = 2.00 M

Try yourself 4.5 c
Try yourself 4.5 c
100mL of a 1.023
$$\neq 10^{3}$$
 M
Nag Poy
4 mass of solute (Nas Poy) = $\frac{2}{3}$
molar concentrations of Na⁺ and Poy⁻²
A CNagPoy = $\frac{1}{V}$
 $\therefore N_{NagPoy} = C \neq V$
 $\therefore N_{NagPoy} = 0$
M_{NagPoy} = n \neq M
 $M_{NagPoy} = n \neq M$
 $M_{NagPoy} = n \neq M$
 $M_{NagPoy} = n \neq M$
 $M_{NagPoy} = 0.013 g$
 $Mag Poy was dissolved$
 $m ensult water to yield a
 $100 \text{ m} 1.023 \pm 10^{3} \text{ m} NagPoy$
 $Mag Poy = 3[NagPoy] = 3(1.023 \pm 10^{3} \text{ m} NagPoy}$
 $[Na^{+}] = 3[NagPoy] = 3(1.023 \pm 10^{3} \text{ m} NagPoy}$$

