Answer to "Try yourself" problems from Study Section 5.4 to 5.6

Try Yourself 5.4 a

An air balloon is being inflated to its full extent by heating the air inside it. In the final stages of this process, the volume of the balloon changes from $4.00 \ge 10^6 \text{ L}$ to $4.50 \ge 10^6 \text{ L}$ by the addition of $1.3 \ge 10^8 \text{ J}$ of heat energy. Assuming that the balloon expands against a constant pressure of 1.0 atm., calculate ΔU for the process. (Conversion factor: 1 L.atm = 101.3 J).

Try Yourself 5.4 b

A certain gas expands in volume from 2.0 L to 6.0 L at constant temperature. Calculate the work done by the gas (in joule and in kilojoule) if it expands (1) against a vacuum and (2) against a constant pressure of 1.2 atm. (Conversion factor: 1 L.atm = 101.3 J).

(1) Because the external pressure = 0, no work is done.

(2) Against a constant pressure of 1.2 atm.

$$w = -PAV$$

= -(1.2 atm.)(6.0L-2.0L)
= -4.8 L. etm >
(onvert to joule and kilojoule.
(T) $w = (-4.8 L. atm.)(101.3 T)$
= -4.9 k10² J, (-4.86.24J)
Lpxr490 J
(kJ) $w = -490 J$
1000
= 0.49 kJ