ANSWER TO "TRY YOURSELF" PROBLEM FROM STUDY SECTION 5.7

Try Yourself 5.7 a

Given the following data:

1.
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
 $\Delta_r H^0_{298} = +180.7 \text{ kJ}$

2.
$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta_r H^0_{298} = -113.1 \text{ kJ}$

3.
$$2N_2O(g) \rightarrow 2N_2(g) + O_2(g)$$
 $\Delta_r H^0_{298} = -163.2 \text{ kJ}$

Calculate $\Delta_r H^0_{298}$ for the following reaction by using Hess's law and manipulating the given reactions above:

4.
$$N_2O(g) + NO_2(g) \rightarrow 3NO(g)$$
 $\Delta_r \mathbf{H}^0_{298} = ?$

Try Yourself 5.7 b

Sucrose (sugar, $C_{12}H_{22}O_{11} = 342.3 \text{ g.mol}^{-1}$) can be oxidized to CO_2 and H_2O and the enthalpy change for the reaction can be measured under conditions of constant pressure.

$$C_{12}H_{22}O_{11}(s) + 12O_2(g) \rightarrow 12CO_2(g) + 11H_2O(liq.)$$
 $\Delta_r H^0 = -5645 \text{ kJ/mol-rxn}$

Calculate the energy that is transferred as heat by burning 5.00 g of sugar.

Try Yourself 5.7 c

Iso-octane (2,2,4-trimethylpentane = $114.18 \text{ g.mol}^{-1}$), one of the many hydrocarbons that make up gasoline, burns in air to give water and carbon dioxide.

$$2C_8H_{18}(l) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(l) \qquad \qquad \Delta_rH^o = -10922 \ kJ-rxn$$

Calculate the enthalpy change if you burn 1.00 L of iso-octane (density = 0.69 g/mL).