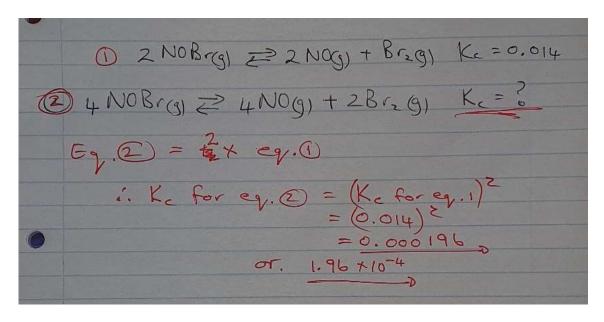
## ANSWERS TO "TRY YOURSELF" PROBLEMS FROM STUDY SECTION 7.5

## Try Yourself 7.5 a

The following reaction have the indicated equilibrium constant at 100°C:


$$2NOBr(g) = 2NO(g) + Br_2(g)$$

$$K_c = 0.014$$

Determine the equilibrium expression, and value for K<sub>c</sub> for the following reactions:

a) 
$$2NO(g) + Br_2(g) + 2NOBr(g)$$

## b) $4NOBr(g) \implies 4NO(g) + 2Br_2(g)$



c) NOBr (g)  $\leftrightarrows$  NO (g) +  $\frac{1}{2}Br_2$  (g)

① 
$$2N08rg_1 = 2N0g_1 + Br_2g_1$$
  $K_c = 0.014$   
②  $N08rg_1 = N0g_1 + \frac{1}{2}Br_2g_1$   $K_c = \frac{3}{2}$   
 $Eq. ② = \frac{1}{2} + eq. ①$   
∴  $K_c for eq. 2 = (K_c for eq. 1)^{1/2}$   
 $= 0.118$ 

## Try Yourself 7.5 b

Given these equilibrium reactions and constants,

(1) 
$$N_2(g) + O_2(g) = 2NO(g)$$
  $K_{C1} = 4.3 \times 10^{-25}$ 

(2) 
$$2NO(g) + O_2(g) \implies 2NO_2(g)$$
  $K_{C2} = 6.4 \times 10^9$ 

Nitrogen dioxide is a toxic pollutant that contributes to photochemical smog. Calculate the equilibrium constant,  $K_{C3}$ , for the overall reaction, given that the  $K_c$ 's occur at the same temperature.

The overall reaction is:

1) 
$$N_2g$$
 +  $O_2g$   $\geq 2NO_2g$ 

2)  $2NO_g$  +  $O_2g$   $\geq 2NO_2g$ 

Overall:  $N_2g$  +  $2O_2g$   $\geq 2NO_2g$ 

Koverall =  $K_1 + K_2 = (4.3 \times 10^{-25})(6.4 \times 10^9)$ 
=  $2.75 \times 10^{-15}$