Answer to "Try yourself" problem from Study Section 9.1

Try Yourself 9.1

- a) You have a 0.30 M solution of formic acid (HCO₂H). Calculate the pH of the formic acid solution. Ka for formic acid = 1.8×10^{-4} at 25 °C.
- b) You add enough sodium formate (NaHCO₂) to make the solution 0.10 M in the salt. Calculate the pH of the solution after adding the salt.

Answer to a:

 $HCO_2H(aq) + H_2O(l) \rightleftharpoons HCO_2^-(aq) + H_3O^+(aq)$

	[HCO ₂ H]	[HCO ₂ ⁻]	$[H_3O^+]$
I (M)	0.30	0	0
C (M)	-X	+x	$+\mathbf{x}$
E (M)	0.30 - x	Х	х

Replace the equilibrium concentrations into the equilibrium constant expression for K_a $K_a = 1.8 \times 10^{-4} = x^2/0.3 - x$ $x = [H_3O^+] = 7.35 \times 10^{-3} M$ pH = -log 7.35 x 10⁻³ = 2.13

Answer to b:

Common ion = HCO_2^-

	[HCO ₂ H]	[HCO ₂ -]	$[H_3O^+]$
I (M)	0.30	0.1	0
C (M)	-X	+x	$+\mathbf{x}$
E (M)	0.30 - x	0.1 + x	х

Replace equilibrium concentrations into equilibrium constant expression for Ka

$$\begin{split} K_a &= 1.8 \ x \ 10^{-4} = (0.1) x \ / \ 0.3 \\ x &= [H_3O^+] = 5.40 \ x \ 10^{-4} \ M \end{split} \qquad \qquad pH = -log \ 5.40 \ x \ 10^{-4} = \underline{3.27} \end{split}$$