ANSWER TO "TRY YOURSELF" PROBLEM FROM STUDY SECTION 9.2

Try Yourself 9.2a

Calculate the pH of a buffer solution with 0.5 mol/L HCOOH and 0.7 mol/L HCOO $^{-}$. K_a for formic acid (metanoic acid) = 1.8×10^{-4} .

Try Yourself 9.2b

You which to prepare 1000 mL of a buffer solution with a pH of 10.50

A list of possible acids (and their conjugated bases) follows:

Acid	Conjugate base	K _a
Benzoic acid (C ₆ H ₅ CO ₂ H)	Benzoate ion (C ₆ H ₅ CO ₂ -)	6.3 × 10 ⁻⁵
Hydrogen sulfide (H ₂ S)	Hydrogen sulfide ion (HS-)	1 × 10 ⁻⁷
Ammonium ion (NH ₄ *)	Ammonia (NH ₃)	5.6 × 10 ⁻¹⁰
Hydrogen carbonate ion (HCO3-)	Carbonate ion (CO ₃ ² -)	4.8 × 10 ⁻¹¹

Which combination should be selected and what should be the ratio of acid to conjugate base?

Answer:

Try Yourself 9.26 Calculate pka values of the acids.

1) Benzoic acid, Ka=6.3×10⁻⁵ = ppKa=4.20

2) Hydrogen sulfide, Ka=1×10⁻⁷ = ppKa=7.00

3) Ammonium ion, Ka=5.6×10⁻¹⁰ = ppKa=9.25

4) Hydrogen carbonate ion, Ka=4.8×10"=0pKa=10.32 Use acid nr. 4: Hydrogen Carbonate because pka value is closest to pH PH = pKa + log [Base] log [Carbonate ion] + pKa = pH
[Hydrogen carbonate ion] 10g [CO32] = 10.50 - 10.32 = 0.18 $\frac{1}{1000} = \frac{10^{0.18}}{1000} = 1.51$: Mod ratio of base : acid = 1.51:1 "So, you will use 1.51 mol of a base salt like sodium carbonate (Na. CO3) and on acidic salt like Sodium hydrogen carbonate (NaHCO3), I mol i'MNaccos = N+M = 1.51 mol + 84.01g mol = 150.06g

M NaHCOS = N+M = 1 mol + 84.01g mol = 84.01g

Missolve 15 33 & Na2CO3 and 84.01g of NaHCO3 in anough water to make up 11 solution.